Oct. 24, 2019

ATLAS Detector

修士論文

Evaluation of newly developed silicon pixel sensors for the upgrade of the ATLAS detector

本橋 和貴

東京工業大学 理工学研究科 基礎物理学専攻 陣内研究室

Inner Detector

ATLAS

Inner Detector

ATLAS

ATLAS Detector

z=0 mm

Barrel

End-cap

Inner Detector

ATIAS

580

Pixel

end-cap

650

400.5

Pixel barrel

495

853.8

物質中のエネルギー損失

✔ 荷電粒子と物質の相互作用

- イオン化 (Ionization)
 - 入射粒子が物質中原子をイオン化させ、電子と弾性散乱する現象
- ▶ 制動放射 (Bremsstrahlung)
 - 入射粒子が核子の電場の影響を受け、光子を放射する現象
- ▶ チェレンコフ放射(Čerenkov radiation)
 - 入射粒子の速さが物質中の光速より早いとき、光子をコーン状に放射す る現象

✔ 重い荷電粒子のエネルギー損失(Bethe-Blochの式) ⇒ イオン化

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

物質中のエネルギー損失

✔ TeV領域のエネルギー損失は、ほぼ制動放射に由来する

- 質量の逆2乗に比例

半導体飛跡検出器

✔ 物質の電子バンド構造

- 絶縁体、半導体、導体のバンド構造
- ✔ シリコン半導体

- 薄く、小型化しやすい(例:厚み 300 µm)
- 電子増倍機構はない

✓ 真性半導体 :電子とホールの数が同じ
 ✓ 不純物半導体:ドーピングをし、電子とホールのバランスを操作したもの

ATLAS Detector

7

半導体飛跡検出器

√ n型:

✔ p型:

- 5価の原子をドープ"ドナー"

- 3価の原子をドープ"アクセプタ"

✔ pn接合(ダイオード):

- 空乏層ができる
- 空乏層幅は、ドーピング量に依存
- バイアス電圧でも広げられる

池上さんスライド P.34-36

半導体飛跡検出器

✔ 荷電粒子の検出原理:

- 荷電粒子が空乏層を横切ると電子ホール対生成
- 電場により電子・ホールは、どちらかのに運ばれる

(再結合のためのキャリアがほとんど存在しないため

- 電子・ホールを信号として検出する

✔ 飛跡検出の原理:

- シリコン半導体を細分化し、

粒子が通った位置情報を得る

池上さんスライド P.33-38

✓ モジュール数:1,744個(10cm²)
 ✓ チャンネル数:8,000万チャンネル
 ✓ チャンネル数/1モジュール:46,080 チャンネル

✓ Pixel Size : 50 x 400 μ m², Resolution : 14 x 115 μ m²

✓ Barrel :

- 1,456 モジュール
- 6,700万 pixel

✓ End-cap:

- 288 モジュール
- 1,300万 pixel

ATLAS

Barrel 部の pixel module

ATLAS

表1.IBLを含めたピクセル検出器の主なパラメータ

Item		Radial Extension	Length	Staves /	Modules	Pixels
		[mm]	[mm]	Sectors		$(\times 10^{6})$
Beam pipe (today)		29 < R < 36				
Beam pipe (with IBL)		25 < R < 29				
IBL	Envelope Sensitive	$\begin{array}{l} 31.0 < R < 40.0 \\ < R >= 33.25 \end{array}$	Z < 332	14	224	6.02
Pixel	Envelope	45.5 < R < 241.0	Z < 3092			
B-layer	Sensitive	< R >= 50.5	Z < 400.5	22	286	13.2
Layer 1	Sensitive	< R >= 88.5	Z < 400.5	38	494	22.8
Layer 2	Sensitive	< R > = 122.5	Z < 400.5	52	676	31.2
Disk 1	Sensitive	88.8 < R < 149.6	< Z >= 495	8 imes 2	48×2	4.4
Disk 2	Sensitive	88.8 < R < 149.6	< Z >= 580	8 imes 2	48×2	4.4
Disk 3	Sensitive	88.8 < R < 149.6	< Z >= 650	8 imes 2	48×2	4.4
					Pixel Total	80.4

✓ Pixel Detector Concept

池上さんスライド P.50

✓ Pixel Detector Concept

照射前 Before	<mark>低</mark> 電界 ⇒ 高降伏電圧	高電界 → 低降伏電圧	<mark>低電界 ⇒ 高</mark> 降伏電圧
照射後 After	高電界 → 低降伏電圧	<mark>低電界 → 高</mark> 降伏電圧	低電界 → 高降伏電圧
照射によって	劣化	改善	改善

池上さんスライド P.51

✔ モジュール数:4,088個 ✔ チャンネル数:600万チャンネル

✓ Barrel :

- 4層 [layer 3-6]
- 円筒型

✓ End-cap :

- 9層 [disc]
- 平面型

✔ Barrel 部の SCT モジュール

- 80 µm pitch
- 1536 readout-channel
- Accuracy < 5 μm
- 2,600 module

✔ End-cap 部の SCT モジュール

- 768strips
- 12cm long
- 54-69, 70-95, 71-90 μm pitch
- Radial range 260 mm 560 mm

ATLAS

池上さんスライド P.42

✔ SCT 読み出し回路

池上さんスライド P.44

√ 粒子タイプに関する追加情報を提供(電子またはパイ中間子)

✔ チャンネル数:350,000チャンネル ✔ 容量:12 m³

√ ストローチューブ:

- 直径:4 mm (中央部に 0.3 mm の金メッキタングステン線)

✓ Barrel :

- 5,000本、長さ 144 cm、直線状
- 両端は、別々に読み出される

✓ End-cap :

- 250,000本、長さ 39 cm、放射状

C-fiber shell

池上さんスライド P.21-22

Transition Radiation Tracker 2005年 ver. √ ストローチューブ ~25 µm Kapton film - ストローは補強されている **C-fiber shell** Polyurethane **Radiator** ~5 µm layer Straws ストローを硬くするため ~0.2 μm Al-layer 4面の C-fibers で包む Carbon-polyimide ~6 µm Protection layer

Reinforcement QC

池上さんスライド P.26

~70µm

50 µ m

1993年 ver.

Kapton

Kapton

Fig. 2 Cut through the straw wall

Kapton + C

Kapton + C

AI 2000 A°

AI 2000 A°

Polyurethane

✔ Barrel 部の TRT モジュール

- 32 modules Ø3rings
- カウンティングレートを 減らすため、2つに分けている
 → 内側11層で十分ではない
 → 内側から ±40cm は2本をジョイント

- 2種類ワイヤー
 - Single joint
 - "Double joint"

池上さんスライド P.23-24

✓ "Single joint" Detail

池上さんスライド P.25

200um

✔ Barrel 部のラジエーター

- ポリプロピレン繊維シート
- 直径 15 mm
- 密度 66 mg/cm⁻³

池上さんスライド P.27

✔ End-cap 部のラジエーター

- ポリプロピレン メッシュ製
 - ▶ 厚み 15 µm
 - ▶ スペーサー間 200 µm
- ✔ End-cap 部のスペーサー
 - セルの大きさ 10 mm x 10 mm
 - フィラメント直径 15-10 mm

池上さんスライド P.28

TRT Read-out : Architecture

- Nominal gas gain : 2.5 x 10⁴
 - ▶ Drift time (DT) : 250 eV threshold
 - ▶ 制動放射(TR): 5 keV threshold

池上さんスライド P.29

³n digitize \rightarrow 170 µm

✔ パイオン検出効率

Figure 3-23 Pion efficiency as a function of $|\eta|$ for $p_T = 2 \text{ GeV}$ for two different electron efficiencies. The efficiencies are relative; to get the total efficiency, the values must be multiplied by the efficiencies to pass the extended track quality cuts.

Figure 3-24 Pion efficiency as a function of $|\eta|$ for $p_T = 20$ GeV for two different electron efficiencies.

池上さんスライド P.30

Inner Detector

ATLAS

✓ |η| - 放射長の検出器種類別の分布

池上さんスライド P.30

Back up

Calorimeter

ATLAS

Calorimeter

✔ 粒子の Energy を測定

- 粒子の Energy を吸収させる必要がある
- ✔ 電磁力ロリメータ:
 - 電子と光子が物質と相互作用するときの
 Energy を測定する

✓ ハドロンカロリメータ:

- 原子核と相互作用するハドロンのEnergyを測定する(Jet)

✔ ニュートリノ・ミューオンを除く既知の粒子の粒子を止めることができる

ATLAS Detector

ATLAS

LAr Calorimeter

✔ LAr 電磁カロリメータ

- 鉛 & LAr … LArで電離した電磁シャワーの Energy を見る
- ✓ LAr ハドロンエンドキャップカロリメータ(HEC)
 - 銅 & LAr
 - $1.5 < |\eta| < 3.2$

✔LAr 前方カロリメータ(FCal)

- 3層
 - (内1層は、電磁カロリメータ
 - 外2層は、ハドロンカロリメータ)
- 銅 & LAr
- 3.1 < |η| < 4.9

Tile Calorimeter

✓ 鉄 & プラスチックシンチレータ

- 500,000 個
- **-** |η| < 1.7

✓ Center Barrel :

- 64 wedges、各 6.4 m、20,000 kg

 \checkmark Two extended Barrels :

- 64 wedges、各 2.6 m、9,600 kg

ATLAS

Muon Detector

ATLAS

トリガーDAQ

磁石システム

Muon Detector

✔ ミューオンの運動量測定と、他の検出器に送るトリガー生成

- ✓ Monitored Drift Tube (MDT)
 - 運動量測定
- ✓ Cathode Strip Chamber (CSC)
 - ヒットレートの高い 2.0 < |η| < 2.7 領域での運動量測定
- ✓ Resistive Plate Chamber (RPC)
 - Barrel部のトリガーシステム
- ✓ Thin Gap Chamber (TGC)
 - End-cap部のトリガーシステム

Magnet System

ATLAS

Magnet System

ATLAS

✔ 主な目的:粒子の軌跡を閉じ込める

- ✓ Barrel Toroid
 - 8つのコイル
 - 超電導上で4Tの磁場

✓ End-cap Toroid

- 共通のクライオスタットに8コイル&8コイル
- 超電導上で 4 T の磁場
- ✓ Central Solenoid Magnet
 - 長さ 5.3 m、直径 2.4 m、厚さ 4.5 cm
 - 2 T の磁場

Trigger & Data AcQuisition System ATLAS

Trigger & Data AcQuisition System ATLAS

✔ トリガーシステム

- 1s 間に最大17億の衝突が発生する
- 1s 間に 600 TB
- 必要なデータだけを取り出して管理可能なサイズにする

✔ DAQシステム

- オフライン解析のため

検出器からデータストレージへ渡す

Trigger & Data AcQuisition System

✓ LEVEL-1 Trigger (LVL1)

- Hardware Trigger
- カロリメータ & ミューオン検出器
- Event 発生から 2 µs 保持
- ✓ High Level Trigger (HLT)
 - Software Trigger
 - ► LEVEL-2 Trigger (LVL2)
 - **Event Filter** (EF)
 - カロリメータ & Tracker & ミューオン検出器
 - 1s あたり約1,000 Event

✔ HL-LHC(High Luminosity LHC)計画 in 2026

✓ LS1

- Insertable B-Layer(IBL)の導入

✓ LS2

- Fast Track Trigger (FTK)の導入
- Thin Gap Chamber (TGC)の最内層の入れ替え

√ LS3

- 内部飛跡検出器の総入れ替え

TRT 無し ⇒ Pixel, SCT のみ

Long Shutdown 1

ATLAS

✔ 2013年~2014年(2年間)

- ✔ Insertable B-Layer(IBL)の導入
 - 最内層(B-Layer)とビームパイプ間に挿入された Pixel Barrel 層
- ✔ 3D pixel sensor の導入

