ATLAS検出器の講義 Trigger DAQ

- •TriggerとDAQの一般論
- •LHC実験のTrigger/DAQ
- ・LVL1トリガー
- •HLT

KEK 徳宿 克夫

Requirements and design parameters

Detectors

	Detector	Channels	Control	Ev. Data
ch	Pixel	6000000	1 GB	50 (kB)
	Tracker	10000000	1 GB	650
	Preshower	145000	10 MB	50
	ECAL	85000	10 MB	100
	HCAL	14000	100 kB	50
	Muon DT	200000	10 MB	10
	Muon RPC	200000	10 MB	5
	Muon CSC	400000	10 MB	90
	Trigger		1 GB	16
	Event ciz			1 Mbyto
	Max LV1	Irigger		100 KHZ
	Online re	jection		99.999%
	System d	lead time		~ %

Moore's law 半導体集積度は、18~24ヶ月で倍増する。Gordon Moore

Detector Readout Control (ZEUS)

Simple handshake method is adopted

- No risk of event loss
- DAQ dead time after a FLT

ATLAS LVL1 subsystems

~7000 calorimeter trigger towers

O(1M) RPC/TGC channels

ATLAS LVL1 subsystems

Central Trigger Processor (CTP)

入力データのリスト (TDRの時期) 8つのEnergy ThresholdでのMultipicity情報が主な内容

ATLAS	Technical Design Report
Level-1 Trigger	24 June 1998

The menu uses a total of 115 bits of input information, compared to the available total of 128 bits. These are:

- 6 × 3-bit muon multiplicities;
- 8 × 3-bit EM cluster multiplicities;
- 8 × 3-bit hadron / tau multiplicities;
- 8 × 3-bit jet multiplicities;
- 8 bits of information on missing- $E_{\rm T}$;
- 4 bits of information on total- $E_{\rm T}$;
- 4 bits reserved for information on forward energy;
- 12 bits used for detector calibration triggers;
- 1 test trigger input.

It should be noted that it would be possible to combine the calibration and test trigger inputs externally to the CTP, for example encoding the calibration/test trigger type in four bits. The number of physics-trigger inputs is determined by the design of the muon and calorimeter trigger processors

CMS GT (=ATLAS CTP) _{obal Trigger}

が本当に必要かも不明)

	Table 15.1: Cable and bit assignment for GCT to GT links					
CMSは正反対のアプローチ	Cable numbers	Data	Bit assignment per cable			
LocalにはDecisionさせず、	1-4	Non-isolated $e/\gamma(1-4)$	E _T (0:5), η(6:9), φ(10:14), P0(16), P1(17) SYN(18), B0(19), B1(20)			
9へ CをCentral で決める。	5-8	Isolated $e/\gamma(1-4)$	E _T (0:5), η(6:9), φ(10:14), P0(16), P1(17) SYN(18), B0(19), B1(20)			
	9-12	Central jets (1-4)	E _T (0:5), η(6:9), φ(10:14), P0(16), P1(17) SYN(18), B0(19), B1(20)			
CMSでは、GTに	13-16	Forward jets (1-4)	E _T (0:5), η(6:9), φ(10:14), P0(16), P1(17) SYN(18), B0(19), B1(20)			
Objectの位置と エネルギーを送る	17-20	τ-jets (1-4)	E _T (0:5), η(6:9), φ(10:14), P0(16), P1(17) SYN(18), B0(19), B1(20)			
CAL $16x24 = 384bits$	21	Total E_T , bits 3:5 of $\phi - E_T^{miss}$	$\frac{\Sigma E_{T}(0:11), OV(12), \phi - E_{T}^{miss}(13:15),}{P0(16), P1(17) SYN(18), B0(19), B1(20)}$			
1110 2484-900115	22	$\begin{array}{c} Missing E_T, \ bits \ 0:2 \\ of \ \phi - E_T^{miss} \end{array}$	$E_{T}^{miss}(0:11), OV(12), \phi - E_{T}^{miss}(13:15), P0(16), P1(17) SYN(18), B0(19), B1(20)$			
原理的にGT上でどんな トリガーでも作れる。	23	Jet counts (1-4)	Count #1 (0:3), Count #2 (4:7), Count #3 (8:11), Count #4 (12:15)			
(ただし、実際に作れるか	24	Jet counts (5-8)	Count #5(0:3), Count #6 (4:7), Count #7 (8:11), Count #8 (12:15)			
は个明。また、複雑なトリカー	-	1				

 Table 15.2: Bit assignment for the backplane GMT to GT link

Data	Bit assignment per line
Muons (1-4)	$\phi(0:7), p_{T}(8:12), quality (13:15), \eta(16:21), sign(22), MIP(23), ISO(24), SYN(25)$

ATLAS LVL1-LVL2

から作られたかがわかるので、その領域のデータだけもらって解析する。

Event Builder

現実に扱うべきシステムは512x512(CMS) 144x136(ATLAS)の多対多ネットワーク 今(2004年)の技術で64x64はテストでき、所定の性能を出すことがわかっている。 それを512x512に拡張してそのまま性能がでるか?(scalability)

DAQ basic unit: 1 Readout Builder (12.5 kHz)

DAQ basic unit: 2 Readout Builder (25 kHz)

DAQ basic unit: 4 Readout Builder (50 kHz)

DAQ basic unit: 8 Readout Builder (100 kHz)

Detector FrontEnd Driver FED

8-fold DAQ system

ここまでのまとめ

- ALTAS/CMSは、PPの高い反応レートの中から重要な事象を選択するために、多段のトリガーシステムを採用した。LVL1はハードウェアのトリガー、それ以降のHLTは市販のPCを(O(1000)台)使ったファームでのソフトウェアトリガーである。
- CMSはLVL1のあと直接EVBし、一段のHLT。
- ATLASはEVBの前に、LVL1でどの領域でトリガー が生じたかの情報を使って(ROI),その領域のデー タだけを解析してLVL2トリガーを得る。LVL2の後 EVBする。
- トリガーは、主にカロリメータとミューオンの情報から 作る。

何でトリガーするか?

Object	Examples of physics coverage	Nomencia ture		
Electrons	Higgs (SM, MSSM), new gauge bosons, extra dimensions, SUSY, W, top	e25i, 2e15i		
Photons	Higgs (SM, MSSM), extra dimensions, SUSY	γ60i, 2γ20i		
Muons	Higgs (SM, MSSM), new gauge bosons, extra dimensions, SUSY, W, top	μ20, 2μ10		
Jets	SUSY, compositeness, resonances	j360, 3j150, 4j100		
Jet+missing E_{T}	SUSY, leptoquarks	j60 + xE60		
Tau+missing E_{T}	Extended Higgs models (e.g. MSSM), SUSY	τ 30 + xE40		

- ある程度高いエネルギーの電子、ミューオンがあれば取る。(inclusive)
 (「ある程度」とは? ← W,Zの崩壊からのレプトン)
- missing E_T はジェットや"タウ"と組み合わせる

(そうでないとレートが高すぎる)

- ジェット単独は非常に高いThresholdが必要。
- ここにないものが自分の物理解析に必要なら、しっかりしたプロポーザルが必要

LVL1のメニューとレート

Selection		2*10³³ cm ⁻² s ⁻¹	10 ³⁴ cm ⁻² s ⁻¹
MU20	(20)	0.8	4.0
2MU6		0.2	1.0
EM25I	<mark>(</mark> 30)	12.0	22.0
2EM15I	<mark>(</mark> 20)	4.0	5.0
J 200	<mark>(290)</mark>	0.2	0.2
3J 90	<mark>(</mark> 130)	0.2	0.2
4J 65	<mark>(90)</mark>	0.2	0.2
J60 + xE60	(100+100)	0.4	0.5
TAU25 + xE30	<mark>(60+60)</mark>	2.0	1.0
MU10 + EM15I		0.1	0.4
Others (pre-scal	es, calibration,)	5.0	5.0
Total		~ 25	~ 40

- Rates given in kHz
 - \rightarrow E_T thresholds imply 95% efficiency values

No safety factor included!

CMSのsafety factorは3

LHCC Open Session, March 13th, 2002

HLT(LVL2+LVL3)のメニュー (LVL2単独でどれだけ落ちるかを見せてくれたことはない)

Selection	2∗10³³ cm ⁻² s ⁻¹ L	VL1のThreshold ⁻² s ⁻¹		
Electron	e25i, 2e15i	e30i, 2e20i		
Photon EN	125i → γ60i, 2γ20i ← 2EM1	5ί γ60ί, 2γ20ί		
Muon	µ20, 2µ10 <mark>←</mark> 2mu6	μ20i, 2μ10		
Jets j20	00 → j400, 3j165, 4j110 ← 3j	j90,4j65 <mark>0, 3j260, 4j150</mark>		
Jet & E _T ^{miss}	j70 + xE70 ← j60+	xE60 j100 + xE100		
tau & E _T ^{miss}	τ35 + xE45 → t25+	xE30 τ60 + xE60		
Muon & electron	μ10 + e15i	µ10 + e15i		
b-physics	2µ6 with $m_B/m_{J/\psi}$	2µ6 with m _B		

 C •ElectronはLVL1のThresholdを維持
 •Photonのレートを落とすのは難しい (沢山のπ⁰) ←Th.を上げる。
 •LVL1の2ミューオンのTh.が低かったのはBの物理のため。 しかしHLTではψ、Yしか残せない。
 •LVL1のジェットはHLTで見てもジェット。レートを下げるにはTh.を上げるしかない。

HLT Rates

Selection	2*10 ³³ cm ⁻² s ⁻¹	Rates (Hz)
Electron	e25i, e15i	~40
Photon	γ60i, <mark>2</mark> γ20i	~40
Muon	μ20, <mark>2</mark> μ10	~40
Jets	j400, <mark>3</mark> j165, 4j110	~25
Jet & E _T ^{miss}	j70 + xE70	~20
tau & E _T ^{miss}	τ35 + xE 45	نې ۲
b-physics	$2\mu 6$ with $m_B / m_{J/\psi}$	~10
Others	pre-scales, calibration,	~20
Total		~200

• No safety factor included!

HLT Performance: Electrons

HLT Performance: Photons

Selection mostly based on finegrained LAr calorimeter

- → Detailed shower shape analysis to reject dominant background from jets with a leading π^0
- Possibility to use track veto (need to identify conversions first)
- Photon efficiency: > 80%
 - → Rejection against jets: >3000

Trigger selection chains

Electron

LVL1 muon LVL2 muon LVL2 calo isol LVL2 tracking EF muon EF calo isol EF tracking

Muon

Double electron trigger and $H \rightarrow 4e$

New result since TDR

- 2e15i at 2x10³³cm⁻²s⁻¹
- Rates consistent with **TDR** assumptions

Trigger Steps	Efficiency wrt LVL1	Rates
LVL1	100 %	3.5 kHz
LVL2 Calo	87.6%	159 Hz
EF Calo	85.9 %	110 Hz
EF ID	73.3 %	5.6 Hz
EF ID-Calo	60.4 %	1.9 Hz

	Trigger Steps	Efficiency wrt LVL1	Overall Efficiency
	LVL1	100 %	99.6 %
	L2Calo	99.7 %	99.4 %
	EFCalo	98.9 %	98.5 %
	EFID	98.1 %	97.7 %
1	EFIDCalo	97.1 %	96.7 %
EEE	Simon	George - LHCC C	comprehensive Rev

- $H \rightarrow 4e m_{H} = 130 2x 10^{33} cm^{-2} s^{-1}$
- 4 reconstructed electrons within $|\eta| < 2.5$
 - 2e with $p_{T} > 7$ GeV
 - 2e with $p_{\rm T}$ > 20 GeV
- Efficiency includes both single and double-object triggers
- Good trigger acceptance of **Higgs events**
- $H \rightarrow 2e2\mu$ also being studied

Simon George - LHCC Comprehensive Review - ATLAS HLT 28 June 2004

12

Efficiency study: $H \rightarrow 2e2\mu$

- Overall trigger efficiency wrt e- passing kinematic cuts
 - 4 reconstructed electrons within $|\eta|$ <2.5
 - At least 4 leptons with $p_T > 7 \text{ GeV}$
 - At least 2 leptons with $p_T > 20 \text{ GeV}$
 - Combined efficiency of both single and double-object trigger selections
 - Good trigger acceptance of Higgs events
 - More events would be selected if μ and e+ μ triggers taken into account

	2x10 ³³	cm ⁻² s ⁻¹		1x10 ³⁴ cm ⁻² s ⁻¹			
Trigger Steps	Efficiency wrt LVL1	Overall Efficiency		Efficiency wrt LVL1	Overall Efficiency		
LVL1	100 %	90.7 %		100 %	87.5 %		
L2Calo	98.2 %	89.1 %		97.3 %	85.2 %		
EFCalo	91.0 %	82.7 %		87.4 %	76.5 %		
EFID	87.2 %	79.2 %		83.8 %	73.3 %		
EFIDCalo 84.7 %		76.9 %		81.2 %	71.0 %		

Simon George - LHCC Comprehensive Review - ATLAS HLT

28 June 2004

23

111

WITHIN THE CALORIMETER COMMUNITY WE ALSO HAVE A GROUP WORKING ON THE SOFTWARE TRIGGER CHAIN. HERE IS A RECENT EVALUATION OF OUR STATUS...

PRELIMINARY

Slic e	Calo. ROD Proc.	Raw Data Format	Data Prep	LVL1 Sim	LVL2 Alg.	LVL2 Calib.	EF Alg.	EF Cali	HLT Core SW	HLT SW Int.	Monitor Needs	Trig. Perf.	Ana. Perf.
е					\bigcirc		\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc
γ					\bigcirc	0	\bigcirc	\bigcirc			\bigcirc		
τ	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	•		•	\bigcirc		•		•
jet				\bigcirc	•		•						•
Ε _τ				\bigcirc									

Comparison CMS - ATLAS rates

Object	ATLAS GeV	CMS GeV	ATLAS Hz	CMS Hz
1e	25	28	40	27
2e	15	17		1
1γ	60	80	40	3
2γ	20	40+25		5
1μ	20	22	40	24
2μ	10	12		6
1j	400		25	
2j				
3j	165			
4j	110			
j+xET	70+70	50+70	20	2.5
tau			5	4
b			10	0
others			20	10
Total			200	82.5

この後の詳細な比較でATLAS CMSトリガーともほぼ同様の性能を持つことがわかった。

最後に

- LHC実験では、pp衝突レートが非常に高いので、 実験の最初から「とりたいEventを取る」というトリ ガーになる。(HERAの初期は「とりたくないEventを 殺す」という論理を使えた。)したがって、自分がほし いEventがちゃんとトリガーされていることを確認す ることが重要である。
- ただし、余分なEventをとると、Offlineの資源を無駄
 に使うことになるので、「とりあえず取っておこう」と
 いう発想は避ける。