素粒子特論

2016年度前期

河野能知 <u>kono.takanori@ocha.ac.jp</u> 理学部1号館208室

高エネルギー・ハドロン衝突

- ・高エネルギーハドロン散乱実験
 - ・ハドロン、特に陽子は内部構造を持つ複合粒子
 - パートン分布関数を用いて、パートン間の散乱として理解できる
 パートン間の重心系エネルギーはいろいろな値を取る
- Tevatron
 - ・重心系エネルギー2.7 TeVの陽子・反陽子衝突型加速器
 - ・アメリカ・シカゴ郊外のFermi National Laboratory (FNAL)
 - ・1987-2011年の間稼働、LHCの運転開始に伴い停止。
 - ・トップ・クォークの発見、ヒッグス粒子、超対称性粒子の探索
- Large Hadron Collider (LHC)
 - ・重心系エネルギー14 TeV(設計値)の陽子・陽子衝突型加速器
 - ・スイス・ジュネーヴ郊外のCERN
 - ・2009年末から稼働
 - ・ヒッグス粒子の発見

 e^+e^- → hadrons断面積 vs. \sqrt{s}

- 高エネルギー(Q² ≥ 10 GeV)ハドロン 散乱の起こり易さは、パートン分布の 大小による
- 運動量割合xが小さい領域では、グ
 ルーオンやsea quarkの寄与が増大する
 - 陽子1個の中に、多数のパートン が存在しているようなもの
- したがって、断面積は√sとともに増加 する
 - その中の個々の反応は、様々な パートンを始状態とする反応

パートン分布関数

NNPDF2.3

高エネルギー・ハドロン散乱

高いエネルギーでは、陽子中のクォークやグルーオン同士の散乱とみなせる

測定量
$$\sigma_{pp\to X}(P) = \sum_{i,j} \iint dx_1 dx_2 f_i(x_i, Q^2) f_j(x_j, Q^2) \sigma_{ij\to X}(x_i P, x_j P)$$

加速器の観点から

最近の高エネルギー加速器は全てシンクロトロンである

<u>シンクロトロン放射</u>

単位時間当たりのエネルギー損失

$$P = \frac{1}{6\pi\epsilon_0} \frac{e^2 a^2}{c^3} \gamma^4$$

$$a = v^2/\rho$$

$$\gamma = E/mc^2$$

<u>一周当たりのエネルギー損失(電子)</u> W(MeV) = 8.85 × 10⁻⁵E⁴/ρ E: 粒子のエネルギー(GeV) ρ: 曲率半径(km)

半径 3 kmだと、 E=100 GeV → W=3 GeV E=200 GeV → W=47 GeV E=300 GeV → W=239 GeV

加速器性能の発展

加速器による素粒子研究

- 電子·陽電子衝突型加速器
 - 対消滅により他の粒子を生 成するため、解析が容易
 - シンクロトロン放射のため、エ ネルギーを上げにくい
- 陽子加速器
 - エネルギーを高くし易い
 - ・ 陽子内に複数のクォークが存 在するため、余分な粒子が数 多く存在する

CM

Large Hadron Collider (LHC)

Station of the American

- ジュネーヴのCERN研究所にある衝突型 加速器(周長約27 km)
- 現在、世界最高エネルギーの加速器
- 陽子を7 TeVまで加速できる

LHCの物理

- LHCの特徴
 - 高い重心系エネルギー: 設計値は14 TeV
 - ・高いルミノシティ: 設計値は $L = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - (Tevatron1 $t, \sqrt{s} = 1.96 \text{ TeV}, L = 4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$)
- ・陽子・陽子衝突で何が起こるか
 - ・様々な種類のパートンを始状態とする散乱が起こる
 - ・パートン間の重心系エネルギーはいろいろ。 $\hat{s} = x_1 x_2 s_1$
 - ・クォーク・反クォーク対消滅により別の粒子の生成も可能
 - 重心系エネルギー以下の質量の粒子であれば原理的には生成可能
- 困難な点
 - ・パートン散乱で起こる過程のほとんどはQCDによるクォークやグルーオンの散乱。こればかり調べてもあまり面白くない
 - ・別の過程を調べる時も、QCD過程がバックグラウンドとして存在する

LHCによる陽子・陽子衝突実験

Pileup

- 陽子・陽子の全断面積は約100 mb
- LHCのルミノシティはL=10³⁴ cm⁻²s⁻¹だが、 バンチ当たりで考えると、
 - $L = L_b \times N_b \times f$
 - $L_b \sim 3 \times 10^{26} \text{ cm}^{-2}$
 - *N_b* = 3000, f = 11 kHzを使用
 - 3×10^{26} (cm⁻²) ×100 mb=30
- バンチが衝突する度に数10個の陽子・陽
 子衝突が起こる

14 TeVの陽子・陽子衝突による物理

ヒッグス粒子探索とLHC

- LHCはLEP実験終了後、LEPトンネル を再利用して陽子・陽子加速器に置き 換えたもの
- LHCで実験が開始する前までに、標準 模型の粒子はヒッグス粒子以外全て 発見されていた
- ヒッグス粒子についても、W[±]やZ⁰ボソンの質量や電弱相互作用の測定から
 ヒッグス・ポテンシャルによる対称性の 破れが起こっていそうということは分かっていた

電弱相互作用の精密測定から得られた ヒッグス粒子の質量のbest fit $m_H = 129^{+74}_{-49}$ GeV

電弱対称性の破れ

 $y_i \overline{\psi_i}(x) \phi(x) \psi_i(x) \rightarrow y_i v \overline{\psi_i}(x) \psi_i(x) + y_i h(x) \overline{\psi_i}(x) \psi_i(x)$ (質量項 + 相互作用項) m_i

ヒッグス粒子の崩壊モードと分岐比

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

ヒッグス粒子の崩壊過程

- 重い粒子への崩壊の方が起こりやすい
- 但し、LHCで発見するには、できるだけクォークやグルーオン以外の粒子に 崩壊するモードで探すべき。(バックグラウンドが少ない)

- クォークやグルーオンといった、陽子の構成要素からヒッグス粒子を生成することが可能である
- LHCで大量に生成されると予想される

様々な生成過程の断面積

ヒッグス粒子探索の方針

$m_H = 125$ GeVの場合の崩壊分岐比

崩壊モード	分岐比	コメント
$b\overline{b}$	58.24%	QCD backgroundが膨大。ZH生成で複数のレプトン があるチャンネルを見る
W^+W^-	21.4%	Wがレプトンに崩壊したモードを見る
gg	8.19%	QCD backgroundが膨大
$\tau^+\tau^-$	6.27%	τ^+ はレプトン崩壊、ハドロン崩壊とも同定可能
сē	2.89%	QCD backgroundが膨大。ZH生成で複数のレプトン があるチャンネルを見る
Z^+Z^-	2.62%	Zがレプトンに崩壊したモードを見る
γγ	0.227%	シグナルはきれい。エネルギー分解能もよい
$\mu^+\mu^-$	0.022	分岐比が小さいけど、シグナルはきれい

生成断面積×崩壊分岐比

LHCにおけるトリガーの役割

LHCの運転状況(2010 - 2012)

Month in Year

2015から√s = 13 TeVに上げてデータ収集 を再開したが、順調に積分ルミノシティを増 やしている

LHC fillとトリガー・レート

ATLAS測定器

- ピクセル型検出器
- ストリップ型検出器
- Transition Radiation Tracker
- 電磁カロリメータ
- ハドロン・カロリメータ
- ・ ミューオン検出器

ハドロン衝突事象の検出

アトラス測定器

衝突点

ミューオン検出器

ー番外側に飛跡検出器を配置。 ここまで到達する粒子は、ほぼ ミューオンのみ。

カロメータ 鉄や鉛等の重い物質の間に検出 器を埋め込んで、粒子の全エネル ギーを吸収して測定する

<u>飛跡検出器</u>

高精度な位置検出器を何層にも 配置して、荷電粒子の通った位置 を測定する

アトラス実験における粒子の識別

ATLAS Experiment © 2013 CERN

標準模型の検証

LHCにおける様々な粒子の生成断面積の測定結果

Standard Model Production Cross Section Measurements

ヒッグス粒子の発見(2012)

- 早い時期に一番感度があるチャンネルは
 - $H \to \gamma \gamma, H \to ZZ \to l^+ l^- l'^+ l'^-, H \to W^+ W^- \to (l^- \nu)(l^- \overline{\nu})$

$H \to Z^{(*)}Z \to l^+l^-l'^+l'^-$

- e^+e^- 対または $\mu^+\mu^-$ 対の不変質量が m_Z になることを要求する
 - レプトン対が2つあって、一方の対は m_Z よりも小さくてもよい(off-shellの 寄与)
- 4つのレプトンの不変質量がm_Hになるはず

Н

μ¹

μ

1. 検出器データから粒子を識別

Ζ

 Z^*

- 不変質量を組んで、親粒子を 確認
- 3. 最終的にヒッグス粒子の不変 質量が求まる

$$H \to W^+ W^- \to (l^- \nu) (l^- \bar{\nu})$$

- QCD backgroundを抑えるため、Wがレ プトン崩壊したものしか使えない
 - この場合、終状態にニュートリノが2 つ生じる(観測できない)
 - Wやヒッグスの不変質量を完全に再 現することはできない
- Transverse mass

•
$$m_{\rm T} = \sqrt{\left(E_{\rm T}^{ll} + E_{\rm T}^{\rm miss}\right)^2 - \left(\vec{p}_{\rm T}^{ll} + \vec{p}_{\rm T}^{\rm miss}\right)^2}$$

- 明確なピークは現れない
 - バックグラウンドとの識別が困難
 - バックグラウンドとなる過程の断面 積や分布の見積もりが重要である
 - そこからの差が有意であることを示 す必要がある

m_T [GeV]

信号の有意性

- 理論的な予想として、標準模型においてヒッグ ス粒子が存在しないとした場合を計算
 - このモデルとデータとのずれが無ければ、
 ヒッグス粒子の必要性はなく断面積の上
 限を設定できる
 - データに超過があれば、モデルとのずれ が大きく出る

理論的な予想として、標準模型においてヒッグ
 ス粒子があるとした場合の信号の強さ(標準
 模型の予言に対して相対的な強さ)

アニメーション(2)

 $H \rightarrow \tau^+ \tau^-$

JHEP 04 (2015) 117

レプトン崩壊: τ⁻ → l⁻ + ν_l + ν_τ
 ハドロン崩壊: τ⁻ → π⁻ + ν_τ, π⁻ + π⁰ + ν_τなど
 を全て利用

*τ*レプトンのハドロン崩壊

Decay mode	$\mathscr{B}\left[\% ight]$	$\mathcal{A} \cdot \varepsilon_{ m reco} [\%]$	$arepsilon_{ ext{ID}}$ [%]
h^{\pm}	11.5	51	75
$h^{\pm}\pi^{0}$	30.0	52	55
$h^{\pm} \ge 2\pi^0$	10.6	68	40
$3h^{\pm}$	9.5	59	70
$3h^{\pm} \ge 1\pi^0$	5.1	59	46

特徴

- 荷電粒子の数は奇数個(1,3,5,...)
- $\pi^0 \rightarrow \gamma \gamma \pi$ が付随することがある
- 実験的には、
 - 奇数本の飛跡 or
 - 奇数本の飛跡+電磁カロリメータにクラスター

 $\pi^0_{\rm cand} \, {\sf E}_{\sf T}$ fraction

τ粒子の同定に使う変数

Cluster pseudorapidity, $|\eta^{clus}|$ Magnitude of the energy-weighted η position of the cluster

Cluster width, $\langle r^2 \rangle^{clus}$ Second moment in distance to the shower axis

Cluster η width in EM1, $\langle \eta^2_{\text{EM1}} \rangle^{\text{clus}}$ Second moment in η in EM1

Cluster η width in EM2, $\langle \eta^2_{\rm EM2} \rangle^{\rm clus}$ Second moment in η in EM2

Cluster depth, $\lambda_{\text{centre}}^{\text{clus}}$ Distance of the shower centre from the calorimeter front face measured along the shower axis

Cluster PS energy fraction, f_{PS}^{clus} Fraction of energy in the PS

Cluster core energy fraction, f_{core}^{clus} Sum of the highest cell energy in PS, EM1 and EM2 divided by the total energy

Cluster logarithm of energy variance, $\log \langle \rho^2 \rangle^{clus}$ Logarithm of the second moment in energy density

Cluster EM1 core energy fraction, $f_{\text{core,EM1}}^{\text{clus}}$ Energy in the three innermost EM1 cells divided by the total energy in EM1

Cluster asymmetry with respect to track, $\mathcal{H}_{track}^{clus}$ Asymmetry in η - ϕ space of the energy distribution in EM1 with respect to the extrapolated track position

Cluster EM1 cells, *N*^{clus}_{EM1} Number of cells in EM1 with positive energy

Cluster EM2 cells, N_{EM2}^{clus} Number of cells in EM2 with positive energy π^0 identification score of the first π^0_{cand} , S_1^{BDT} π^0 identification score of the π^0_{cand} with the highest π^0 identification score

 $E_{\rm T}$ fraction of the first $\pi^0_{\rm cand}$, $f_{\pi^0,1}$ $E_{\rm T}$ of the $\pi^0_{\rm cand}$ with the highest π^0 identification score, divided by the $E_{\rm T}$ -sum of all $\pi^0_{\rm cand}$'s and h^{\pm} 's

Hadron separation, $\Delta R(h^{\pm}, \pi^{0})$ ΔR between the h^{\pm} and the π^{0}_{cand} with the highest π^{0} identification score

 h^{\pm} distance, $D_{h^{\pm}}$ E_{T} -weighted ΔR between the h^{\pm} and the $\tau_{\text{had-vis}}$ axis, which is calculated by summing the four-vectors of all h^{\pm} 's and π_{cand}^{0} 's

Number of photons, N_{γ} Total number of photons in the $\tau_{\text{had-vis}}$, as reconstructed in Section 3.3

 π^0 identification score of second π^0_{cand} , S_2^{BDT} π^0 identification score of the π^0_{cand} with the second-highest π^0 identification score

 $\pi_{\text{cand}}^{0} E_{\text{T}}$ fraction, $f_{\pi^{0}}$ E_{T} -sum of π_{cand}^{0} 's, divided by the E_{T} -sum of π_{cand}^{0} 's and h^{\pm} 's

 π^{0}_{cand} mass, $m_{\pi^{0}}$ Invariant mass calculated from the sum of π^{0}_{cand} four-vectors

Number of $\pi^0_{\rm cand}$, N_{π^0}

Standard deviation of the $h^{\pm} p_{\mathrm{T}}, \sigma_{E_{\mathrm{T}},h^{\pm}}$

Standard deviation, calculated from the $p_{\rm T}$ values of the h^{\pm} 's for $\tau_{\rm had-vis}$ with three associated tracks

 h^{\pm} mass, $m_{h^{\pm}}$ Invariant mass calculated from the sum of h^{\pm} four-vectors $H \rightarrow b\bar{b}$

• Vector boson fusion生成で探索

Process	Pre-selection	Category 1 (-0.08 to 0.01)	Category II (0.01 to 0.06)	Category III (0.06 to 0.09)	Category IV (> 0.09)
VBF $H \rightarrow b\bar{b}$	130	39	33	23	19
$ggF H \rightarrow b\bar{b}$	94	31	8,5	3.8	1.6
$Z \rightarrow b\bar{b}$	3700	1100	350	97	49
Data	554302	176073	46912	15015	6493

bクォーク由来ジェットの同定

- Bハドロンは寿命が数psと長い
 - $c\tau_{B^+} = 491.1 \ \mu m$
 - $c\tau_{B^0} = 455.7 \ \mu m$
- Bハドロンの崩壊点(secondary vertex)と
 1次衝突点との関係を使ってu,d,s,cクォーク由来のジェットと識別
- d_0
 - x, y平面における1次衝突点と飛跡の 最短距離

bクォーク由来ジェットの同定

SV algorithm

2次崩壊点に付随する飛跡 から計算した不変質量 1次衝突点と2次崩壊点の間の3次元的な距離

このようなバックグラウンドと識別能力がある変数 を複数組み合わせて、多変量解析をしてb-jetらし いか判定する Neural network

ジェットに含まれる飛跡 のエネルギー和に対する 2次崩壊点に付随する飛 跡のエネルギー和の比 $H \rightarrow b\bar{b}$

CMS実験の結果

Phys. Rev. D 89, 012003 (2014)

ヒッグス粒子の生成・崩壊のまとめ

パラメータのフィット

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Analysis		Signal	$\int \mathcal{L} dt$	$[\mathrm{fb}^{-1}]$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Categorisation or final states	Strength μ	Significance [s.d.]	$7 { m TeV}$	$8 { m TeV}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H \to \gamma \gamma \ [12]$	1.17 ± 0.27	5.2(4.6)	4.5	20.3
$\begin{array}{c cccc} VH: \text{ one-lepton, dilepton, } E_{\mathrm{T}}^{\mathrm{miss}}, \text{ hadronic} & \checkmark & \checkmark & \checkmark \\ & & & \\ VBF: \text{ tight, loose} & & \checkmark & \checkmark & \checkmark \\ & & & \\ ggF: 4 \ p_{\mathrm{Tt}} \text{ categories} & & \checkmark & \checkmark & \checkmark \\ & & & & \checkmark & \checkmark & \checkmark \\ & & & \\ H \rightarrow ZZ^* \rightarrow 4\ell \ [13] & 1.44^{+0.40}_{-0.33} & 8.1 \ (6.2) & 4.5 & 20.3 \\ & & & & \checkmark & \checkmark & \checkmark \\ & & & & & \checkmark & \checkmark &$	ttH: leptonic, hadronic			\checkmark	\checkmark
$\begin{array}{c c} \text{VBF: tight, loose} & \checkmark & \checkmark & \checkmark \\ \text{ggF: 4 } p_{\text{Tt}} \text{ categories} & & \checkmark & \checkmark & \checkmark \\ \hline H \rightarrow ZZ^* \rightarrow 4\ell \ [13] & 1.44^{+0.40}_{-0.33} & 8.1 \ (6.2) & 4.5 & 20.3 \\ \text{VBF} & & \checkmark & \checkmark & \checkmark \\ VH: \text{ hadronic, leptonic} & & \checkmark & \checkmark & \checkmark \\ \text{ggF} & & \checkmark & \checkmark & \checkmark \\ \hline \end{array}$	VH : one-lepton, dilepton, $E_{\rm T}^{\rm miss}$, h	adronic		\checkmark	\checkmark
$ \begin{array}{c c} \mbox{ggF: 4 $p_{\rm Tt}$ categories} & \checkmark & \checkmark & \checkmark \\ \hline H \rightarrow ZZ^* \rightarrow 4\ell \ [13] & 1.44^{+0.40}_{-0.33} & 8.1 \ (6.2) & 4.5 & 20.3 \\ \hline VBF & \checkmark & \checkmark & \checkmark \\ VH: \ hadronic, \ leptonic & & \checkmark & \checkmark & \checkmark \\ \ ggF & & \checkmark & \checkmark & \checkmark \\ \hline \end{array} $	VBF: tight, loose			\checkmark	\checkmark
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ggF: 4 $p_{\rm Tt}$ categories			\checkmark	\checkmark
VBF \checkmark VH : hadronic, leptonic \checkmark ggF \checkmark	$H \to ZZ^* \to 4\ell \ [13]$	$1.44_{-0.33}^{+0.40}$	8.1(6.2)	4.5	20.3
$VH: hadronic, leptonic \qquad \checkmark \qquad $	VBF			\checkmark	\checkmark
ggF √ √	VH: hadronic, leptonic			\checkmark	\checkmark
	ggF			\checkmark	✓
$H \to WW^*$ [14,15] $1.16^{+0.24}_{-0.21}$ 6.5 (5.9) 4.5 20.3	$H \rightarrow WW^*$ [14,15]	$1.16\substack{+0.24\\-0.21}$	6.5(5.9)	4.5	20.3
ggF: (0-jet, 1-jet) \otimes (ee + $\mu\mu$, e μ) \checkmark	ggF: (0-jet, 1-jet) \otimes (ee + $\mu\mu$, e μ)			\checkmark	\checkmark
$ggF: \ge 2$ -jet and $e\mu$ \checkmark	ggF: ≥ 2 -jet and $e\mu$				\checkmark
$VBF: \geq 2\text{-jet} \otimes (ee + \mu\mu, \ e\mu) \qquad \checkmark \qquad \checkmark$	$VBF: \geq 2\text{-jet} \otimes (ee + \mu\mu, \ e\mu)$			\checkmark	\checkmark
$VH:$ opposite-charge dilepton, three-lepton, four-lepton \checkmark	VH: opposite-charge dilepton, three	ee-lepton, four-lept	on	\checkmark	\checkmark
$VH:$ same-charge dilepton \checkmark	VH: same-charge dilepton				✓
$H \to \tau \tau \ [17] \qquad 1.43^{+0.43}_{-0.37} \qquad 4.5 \ (3.4) \qquad 4.5 \qquad 20.3$	$H \to \tau \tau \ [17]$	$1.43^{+0.43}_{-0.37}$	4.5(3.4)	4.5	20.3
Boosted: $\tau_{\text{lep}}\tau_{\text{lep}}\tau_{\text{hef}}\tau_{\text{had}}$, $\tau_{\text{had}}\tau_{\text{had}}$	Boosted: $ au_{ m lep} au_{ m lep}, au_{ m lep} au_{ m had}, au_{ m had} au_{ m had}$			\checkmark	\checkmark
$VBF: \tau_{lep}\tau_{lep}, \tau_{lep}\tau_{had}, \tau_{had}\tau_{had} \qquad \checkmark \qquad \checkmark$	VBF: $\tau_{\text{lep}}\tau_{\text{lep}}, \tau_{\text{lep}}\tau_{\text{had}}, \tau_{\text{had}}\tau_{\text{had}}$			\checkmark	\checkmark
$VH \to Vb\bar{b}$ [18] 0.52 ± 0.40 1.4 (2.6) 4.7 20.3	$VH \to V b \bar{b} \ [18]$	0.52 ± 0.40	1.4(2.6)	4.7	20.3
$0\ell \ (ZH \to \nu\nu b\bar{b}): \ N_{\rm jet} = 2, 3, \ N_{\rm btag} = 1, 2, \ p_{\rm T}^V \in 100\text{-}120 \ {\rm and} > 120 \ {\rm GeV} \qquad \checkmark \qquad \checkmark$	$0\ell \ (ZH \to \nu\nu b\bar{b}): N_{\text{iet}} = 2, 3, N_{\text{btag}} = 1, 2, p_{\text{T}}^V \in 100\text{-}120 \text{ and } > 120 \text{ GeV}$				\checkmark
$1\ell (WH \to \ell \nu b \bar{b}): N_{\text{iet}} = 2, 3, N_{\text{btag}} = 1, 2, p_{\text{T}}^V < \text{and} > 120 \text{ GeV}$ \checkmark	$1\ell \ (WH \to \ell \nu b \bar{b}): \ N_{\rm jet} = 2, 3, \ N_{\rm btag}$	$p = 1, 2, p_{\rm T}^V < \text{and} $	> 120 GeV	\checkmark	\checkmark
$2\ell (ZH \to \ell\ell b\bar{b}): N_{\text{jet}} = 2, 3, N_{\text{btag}} = 1, 2, p_{\text{T}}^V < \text{and} > 120 \text{ GeV}$ \checkmark	$2\ell \; (ZH \rightarrow \ell\ell b \bar{b}): \; N_{ m jet} = 2, 3, \; N_{ m btag} = 1, 2, \; p_{ m T}^V < { m and} > 120 \; { m GeV}$				\checkmark
95% CL limit			95% CL limit		
$H \to Z\gamma$ [19] $\mu < 11 (9)$ 4.5 20.3	$H \to Z\gamma$ [19]		$\mu < 11$ (9)	4.5	20.3
$\frac{10 \text{ categories based on } \Delta \eta_{Z\gamma} \text{ and } p_{\text{Tt}}}{V} \qquad \qquad \sqrt{V}$	10 categories based on $\Delta \eta_{Z\gamma}$ and p	Tt		V 1 5	<u>√</u>
$H \to \mu\mu$ [20] $\mu < 7.0 (7.2)$ 4.5 20.3	$H \to \mu \mu [20] \qquad \qquad \mu < 7.0 \ (7.2)$				20.3
VBF and b other categories based on η_{μ} and $p_{\rm T}$ v v	VBF and 6 other categories based of	V 1 F	<u>√</u>		
the production $[21,22,23]$ 4.5 20.3 4.5 (2.3)	ttH production [21,22,23] $H_{\rm ext}$ is all laster dilator				20.3
$H \to 60$: single-lepton, dilepton $\mu < 3.4 (2.2)$ $\sqrt{100}$	$\mu \to 00$: single-lepton, dilepton $\mu < 3.4$ (2.2)				V
$\mu < 4.7 (2.4)$	$H \rightarrow a \alpha \alpha$; leptonic hadronic	$\mu < 4.7 (2.4)$ $\mu < 6.7 (4.0)$.(V	
$\frac{\mu < 0.7 (4.5)}{\mu} = \frac{\mu}{100} = \frac{100}{100} = \frac{100}{1$	$\mu < 6.7 (4.9)$			v	<u>v</u>
Off-shell <i>H</i> production [24] $\mu < 5.1 - 8.6 (6.7 - 11.0)$ 20.3	Off-shell H production [24] $U^* \rightarrow ZZ \rightarrow A^0$		$\mu < 5.1 - 8.6 (6.7 - 11.0)$		20.3
$\Pi \rightarrow \Delta \Delta \rightarrow 4\ell \qquad \checkmark$	$\Pi \longrightarrow Z Z \longrightarrow 4\ell$ $U^* \longrightarrow Z Z \longrightarrow 2\ell^2 \Sigma$				V
$H^* \to WW \to auu$	$H^* \to WW \to auuu$				V

arXiv:1606.02266

フィットして求めるのは

- 各過程の断面積
- 各粒子との結合定数

ヒッグスの崩壊モードの観測状況

今後の課題

- ・ ヒッグス粒子の結合定数
 - ・ bクォークとの結合定数の精度を上げる
 - 同様に、*t*やµの精度もさらに精密にする
 - ・第一世代粒子との結合を測定するのは難しい
- ヒッグス・ポテンシャルについて
 - HH対生成過程を調べることで、ヒッグスの3点結合について知ることが できる。最も有望なのは、 $HH \rightarrow (b\overline{b})(\gamma\gamma)$ チャンネル
 - ・現行のLHCでは難しくHigh-Luminosity LHC (HL-LHC)が必要
 - $\int Ldt = 3,000 \text{ fb}^{-1}$
- ・標準模型に何故ヒッグスの2重項があるのか
 - ヒッグスの仲間はあるか?
 - ・ 最も簡単な拡張は2重項をもう一つ導入すること。Two Higgs Doublet
 - ・ヒッグス場の真空期待値がゼロ出ないことの帰結/意味
 - 真空がヒッグス場で充満されている? 真空の相転移とは?

Backup slides

点状の荷電粒子の弾性散乱

- Rutherford散乱
 - 荷電粒子と荷電粒子の間の散乱。クーロンカだけを考えている
 - 粒子のスピンは考慮されていない

•
$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Rutherford}} = \frac{Z^2 \alpha^2}{4E^2 \sin^4 \frac{\theta}{2}}$$

- Mott散乱
 - 電子散乱において、スピンをもつ電子が標的の作るクーロン電場に よって散乱される
 - 標的のスピンは考慮されていない
 - $\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Rutherford}} \left(1 \beta^2 \sin^2 \frac{\theta}{2}\right)$
- 場の理論による電荷とスピンをもつ粒子同士の弾性散乱

• 例:
$$e^- + \mu^- \rightarrow e^- + \mu^-$$

•
$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{point, spin 1/2}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(1 + \frac{Q^2}{2M^2} \cdot \tan^2 \frac{\theta}{2}\right)$$

構造をもつ荷電粒子の弾性散乱

- ・ 点状の荷電粒子ではなく、 標的が構造をもつ場合を考える
 - ・入射粒子は点状の電子とする
- 標的が電荷分布 ρ(x)を持つ場合
 - 形状因子F(q): 電荷分布のフーリエ変換
 - $\left(\frac{d\sigma}{d\Omega}\right)_{\text{Rutherford}} \rightarrow \left(\frac{d\sigma}{d\Omega}\right)_{\text{Rutherford}} |F(\vec{q})|^2$

•
$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \rightarrow \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} |F(\vec{q})|^2$$

- $\left(\frac{d\sigma}{d\Omega}\right)_{\text{point, spin 1/2}} \rightarrow \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[W_2(Q^2,\nu) + 2W_1(Q^2,\nu)\tan^2\frac{\theta}{2}\right]$
- •構造関数
 - $W_1(Q^2, \nu), W_2(Q^2, \nu)$

 $H \rightarrow \gamma \gamma \geq H \rightarrow ZZ^* \rightarrow 4l \neq \gamma \sim \lambda$

- ぞれぞれの崩壊チャンネルで親粒子の不変質量の分布を作成
- 両方とも125 GeV付近にピークが見える → 新粒子の発見
- ヒッグス粒子の崩壊から来ているものと考えられる

$H \rightarrow \tau^+ \tau^-, b\bar{b}$ モードにおける探索・測定

$\underline{pp \to H \to \tau^+ \tau^-}$

- τ粒子はレプトンまたはハドロンに崩壊
- 崩壊モードによって場合分けして解析

$pp \to W/Z + H, H \to b\overline{b}$

 終状態にbクォーク由来の ジェットを2本要求する

様々な崩壊モードにおける信号の強さ

- ヒッグス粒子の信号の強さを標準模型による予想値で規格した量(µ)
- 5つ崩壊モードで探索・測定が行われ 全てµ = 1と整合的である
- その他、新粒子のスピンやパリティといった量子数を求めることで、新粒子が標準模型で予言されていたヒッグス粒子であると言える

