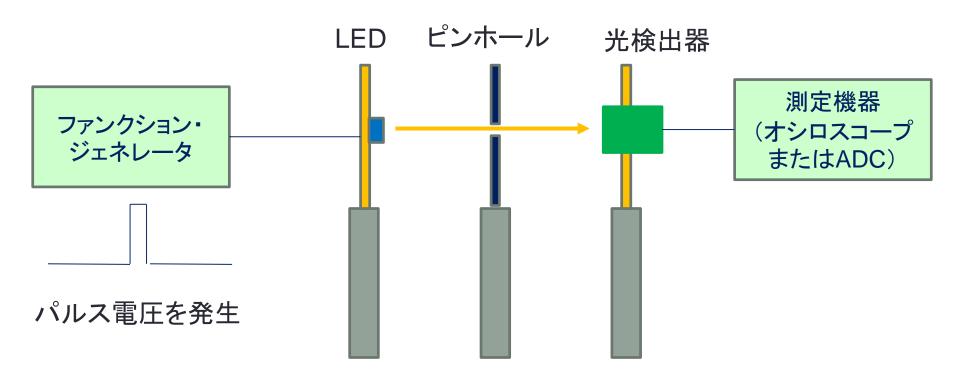
2013/9/24

微弱光に対する光センサの 性能比較

2013年度 4年生実験 資料(2)

目的•概要


- ・ここ10年程で様々な高感度の光センサが開発・実用化されている
 - ・光電子増倍管(昔からある)
 - Avalanche Photo Diode (APD)
 - Multi-Pixel Photon Counter (MPPC)
- ・ 光検出の仕組み
 - 入射した光子から電子を生成
 - ・電場の中で電子を加速→衝突→2次電子発生というプロセスを繰り返し て信号を増幅
 - ・(光電変換、2次電子生成の仕組みは少し異なる)
- ・3種類の検出器の性能を比較する
 - 感度や出力の線形性等
 - LEDを光源として、光の強さを変えながら
 - どこまで微弱な光まで検出できるか?
 - ・ 光子が1つ、2つ入ってくるという光の量子化を観測できるか?

実験内容

- ・LEDを点滅させて、微弱な光を作り出す
 - 光センサへ入射させるには、さらにピンホールを通して絞る
 - 外部電圧により強弱を調整
- LEDからの光を検出できる位置にセンサを設置する
- LEDの点滅に合わせて検出器からのデータを読み出す
- ・信号の強さ(波高、電荷量等)を測定
- 測定項目
 - ・センサを動作させる高電圧、温度等の効果
 - センサに入射させる光の強度によって、検出される信号の強さがどのように変化するか

2013/9/24

実験のセットアップ(1)

開発項目

- LEDの点滅
 - ・ファンクション・ジェネレータでパルス状の電圧を生成して、LEDに入力するための回路
- ・ 光検出器からの信号の読み出し
 - ・フォトダイオード
 - ダイオードからの信号を読み出してLEMOケーブルで読み出すための回路
 - 光電子増倍管
 - 既にパッケージ化されている
 - Avanlanche Photo-diode
 - ダイオードからの信号を読み出してLEMOケーブルで読み出すための回路
- データの収集と解析
 - LEDの点滅に合わせてデータを読み出すための設定
 - 信号をデジタル化(A/D変換)してPCに取り込む
 - ・後で解析

予備的な実験

- LEDが予想通りに点滅しているかの確認
 - ファンクション・ジェネレータから様々なパターンを入力してオシロスコープで確認
- フォトダイオードで光を検出できているか
 - ・LEDまたはピンホールからの距離によって、検出される信号がどのよう に変化するか調べる
- ・特性の評価
 - ・フォトダイオードの読み出し条件を一定に保ち、LEDの駆動電流を変化 させて検出される光量を確認(電流 vs. 発光量)
 - 発光量と検出される信号の妥当性を確認
 - 単位時間当たり何W、発光/検出しているか
 - どれくらい微弱な光、または明るい光まで読み出せるか
 - 発光量 vs. 検出される信号

光電子増倍管(PMT)による測定

注意点:

- ・光電子増倍管は増幅率が高い(10⁶)ため、明るい光を入射させると検 出器が大電流を発生して壊す可能性がある
- 高電圧をかけて状態で、あまり明るい光を当てない
- 高電圧をかける時は、暗い環境で使用する
- 前のページと同様に特性を調べる
 - 発光量 vs. 検出される信号
 - 発光させない状態でもデータを取得して比較
 - どこまで弱い光を検出できているか
- この辺までを11月中に行い、12月14日に展示

2013/9/24

APD

- ・読み出し回路の製作と動作の確認
- ・ PMTの場合と同様の測定を行う。
- PMTとAPDで性能の差はあるか?